Magnetocontrollability of Fe7C3@C superparamagnetic nanoparticles in living cells

نویسندگان

  • Irina B Alieva
  • Igor Kireev
  • Anastasia S Garanina
  • Natalia Alyabyeva
  • Antoine Ruyter
  • Olga S Strelkova
  • Oxana A Zhironkina
  • Varvara D Cherepaninets
  • Alexander G Majouga
  • Valery A Davydov
  • Valery N Khabashesku
  • Viatcheslav Agafonov
  • Rustem E Uzbekov
چکیده

BACKGROUND A new type of superparamagnetic nanoparticles with chemical formula Fe7C3@C (MNPs) showed higher value of magnetization compared to traditionally used iron oxide-based nanoparticles as was shown in our previous studies. The in vitro biocompatibility tests demonstrated that the MNPs display high efficiency of cellular uptake and do not affect cyto-physiological parameters of cultured cells. These MNPs display effective magnetocontrollability in homogeneous liquids but their behavior in cytoplasm of living cells under the effect of magnetic field was not carefully analyzed yet. RESULTS In this work we investigated the magnetocontrollability of MNPs interacting with living cells in permanent magnetic field. It has been shown that cells were capable of capturing MNPs by upper part of the cell membrane, and from the surface of the cultivation substrate during motion process. Immunofluorescence studies using intracellular endosomal membrane marker showed that MNP agglomerates can be either located in endosomes or lying free in the cytoplasm. When attached cells were exposed to a magnetic field up to 0.15 T, the MNPs acquired magnetic moment and the displacement of incorporated MNP agglomerates in the direction of the magnet was observed. Weakly attached or non-attached cells, such as cells in mitosis or after cytoskeleton damaging treatments moved towards the magnet. During long time cultivation of cells with MNPs in a magnetic field gradual clearing of cells from MNPs was observed. It was the result of removing MNPs from the surface of the cell agglomerates discarded in the process of exocytosis. CONCLUSIONS Our data allow us to conclude for the first time that the magnetic properties of the MNPs are sufficient for successful manipulation with MNP agglomerates both at the intracellular level, and within the whole cell. The structure of the outer shells of the MNPs allows firmly associate different types of biological molecules with them. This creates prospects for the use of such complexes for targeted delivery and selective removal of selected biological molecules from living cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells

Magnetic nanoparticles have been highly regarded because of their unique properties, such as hyperthermia, medicine control release, and diagnostic applications. The main aim of the current paper is to offer a new system for the modification of Fe3O4 (SPIONs) superparamagnetic nanoparticles physically and chemically with polymers through physical retention. These modified nanoparticles have bee...

متن کامل

Investigation of Combination Effect Between 6 MV X-Ray Radiation and Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles on U87-MG Cancer Cells

Background: Radiosensitization using nanoparticles is proposed as a novel strategy for treatment of different cancers. Superparamagnetic iron oxide nanoparticles (SPIONs) have been reported to enhance effects of radiotherapy in several researches. Objective: The objective of this research is to investigate the radiosensitization properties of polyglycerol coated SPIONs (PG-SPIONs) on U87-...

متن کامل

A magnetic nanoprobe technology for detecting molecular interactions in live cells.

Technologies to assess the molecular targets of biomolecules in living cells are lacking. We have developed a technology called magnetism-based interaction capture (MAGIC) that identifies molecular targets on the basis of induced movement of superparamagnetic nanoparticles inside living cells. Efficient intracellular uptake of superparamagnetic nanoparticles (coated with a small molecule of int...

متن کامل

The Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line

Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...

متن کامل

The Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line

Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016